

Date:11.10.2023

Resource Person: Dr Debendra Nath Dash, Lecturer in Mathematics, SM City College,

Cuttack

Chaired by : Mr Markandeswar Mohapatra, Principal

Faculty Member: Mr Manoj Kumar Senapati

Title: Matrices in Business: Applications and Implications

Introduction:

Matrices are a fundamental concept in mathematics, with far-reaching applications in business and economics. This seminar explores the role of matrices in business decisionmaking, highlighting their significance and impact.

- Matrix Algebra: We reviewed the basics of matrix algebra, including operations, inverses, and determinants.
- 2. Business Applications:
 - We discussed matrices' role in:
 - Market Research (e.g., consumer behavior, preference analysis)
 - Financial Analysis (e.g., portfolio optimization, risk management)
 - Operations Research (e.g., resource allocation, supply chain management)
 - Management Information Systems (e.g., data analysis, decision support)

. Case Studies:

- We presented real-world examples, such as:
- A company using matrices to analyze customer preferences and optimize marketing strategies
- A financial institution employing matrices to manage investment portfolios and minimize risk

Conclusion:

The seminar demonstrated the significance of matrices in business, showcasing their ability to analyze complex data, optimize decision-making, and drive strategic planning. By applying matrix techniques, businesses can gain a competitive edge, improve efficiency, and enhance profitability.

Recommendations:

- Further exploration of matrices' applications in emerging fields like data science and artificial intelligence
- Investigation of matrices' role in addressing complex business challenges, such as sustainability and supply chain resilience
- Development of educational resources to share the power of matrices with a broader business audience

By embracing matrices, businesses can unlock new opportunities for growth, innovation, and success.

DEPARTMENT OF MATHMETICS

Date: 18.12.2022

Resource Person: Dr. Suvendu Parida, H.O.D Mathematics, S.C.S Autonomous College, Puri

Chaired By : Mr Jatindra Kumar Mishra, Principal

H.O.D : Mr Markandeswar Mohapatra

Faculty member: Mr Manoj Kumar Senapati

Title: Linear Programming in Daily Life: Optimizing Resources and Decision-Making

Introduction

Linear programming (LP) is a powerful mathematical technique used to optimize resource allocation and decision-making in various fields. This seminar explores the applications of LP in daily life, highlighting its significance and impact.

- Definition and Basics: We introduced the concept of LP, explaining its components, including variables, constraints, and objective functions.
 - 2. Real-World Applications: We discussed LP's applications in:
 - Resource Allocation (e.g., production planning, inventory management)
 - Transportation and Logistics (e.g., route optimization, supply chain management)
 - Finance (e.g., portfolio optimization, risk management)
 - Healthcare (e.g., resource allocation, scheduling)
 - Energy Management (e.g., power grid optimization, energy efficiency)
 - 3. Case Studies:
 - We presented real-world examples, such as:

- A company optimizing production levels to meet demand while minimizing costs
- A transportation company using LP to reduce fuel consumption and lower emissions

Conclusion:

The seminar demonstrated the significance of linear programming in daily life, showcasing its ability to optimize resources, improve decision-making, and drive efficiency. By applying LP techniques, individuals and organizations can make informed decisions, reduce costs, and enhance productivity.

Recommendations:

- Further exploration of LP's applications in emerging fields like data science and artificial intelligence
 - Investigation of LP's role in addressing complex societal challenges, such as climate change and resource sustainability
 - Development of educational resources to share the power of LP with a broader audience

By embracing linear programming, we can unlock new opportunities for growth, innovation, and problem-solving in various aspects of life.

H. O. D.

Date: 22.01.2020

Resource Person: Mr Sadasib Das, Reader in Mathematics, Pipili College, Pipili

Chaired By: Mr Pravakar Sahoo, Principal

H.O.D : Mr Markandeswar Mohapatra

Faculty: Mr Manoj Kumar Senapati

Title: The Magic of Zero: Unveiling the Power of Nothingness

Introduction:

Zero, often considered a mere placeholder, holds a profound significance in mathematics, science, and philosophy. This seminar delves into the fascinating world of zero, exploring its unique properties, applications, and impact on human understanding.

- Historical Development: We traced the evolution of zero from ancient civilizations to its modern representation, highlighting its gradual acceptance and standardization.
- Mathematical Properties: We examined zero's role as the additive identity, its multiplicative property, and its behavior in calculus, revealing its versatility and importance.
- Scientific Applications: We discussed zero's significance in physics, engineering, and computer science, including its representation of the absence of quantity, infinity, and the binary system.

 Philosophical Implications: We touched upon the philosophical and cultural interpretations of zero, representing the void, the infinite, and the mysterious.

Conclusion:

The seminar showcased the multifaceted nature of zero, demonstrating its far-reaching impact on mathematics, science, and human understanding. By embracing the magic of zero, we can unlock new perspectives, foster innovation, and deepen our appreciation for the intricacles of mathematics.

Recommendations:

- Further exploration of zero's applications in emerging fields like data science and artificial intelligence
 - Investigation of zero's role in non-Western mathematical traditions and cultures
 - Development of educational resources to share the fascination of zero with a broader audience

By unraveling the magic of zero, we can continue to push the boundaries of human knowledge and innovation.

H.O.D.

Principal D.K.N. College Eranch, Cuttaci

DEPARTMENT OF MATHMETICS

SEMINAR DATE: 17.01.2019

RESOURCE PERSON: Dr. SRIKANTA DASH. LECTURER IN MATHEMATICS. BANKI AUTONOMOUS COLLEGE,

BANKI

CHAIRED BY :MR DHIREN KUMAR MISHRA, PRINCIPAL

H.O.D.: Mr MARKANDESWSR MOHAPATRA

FACULTY MEMBER: Mr MANOJA KUMAR SENAPATI

Title: How to Count without Counting: Exploring Alternative Methods in Mathematics

Introduction:

Counting is a fundamental concept in mathematics, but what if we told you there are ways to count without actually counting? This seminar delves into alternative methods that enable us to determine the number of objects or arrangements without explicit enumeration.

Methods

- Hashing: We discussed how hashing functions can map objects to unique indices, allowing us to keep track of the number of objects without counting.
- Combinatorial Methods: We explored combinatorial formulas, such as permutations and combinations, to calculate the number of arrangements without counting.
- Approximation Algorithms: We introduced probabilistic and approximation techniques, like sampling and estimation, to arrive at a close estimate of the count without exact enumeration.
- Data Structures: We examined data structures like Bloom filters, which provide an estimate of the number of unique elements without storing or counting them explicitly.

Date:11.10.2023

Resource Person: Dr Debendra Nath Dash, Lecturer in Mathematics, SM City College,

Cuttack

Chaired by : Mr Markandeswar Mohapatra, Principal

Faculty Member: Mr Manoj Kumar Senapati

Title: Matrices in Business: Applications and Implications

introduction:

Matrices are a fundamental concept in mathematics, with far-reaching applications in business and economics. This seminar explores the role of matrices in business decisionmaking, highlighting their significance and impact.

- Matrix Algebra: We reviewed the basics of matrix algebra, including operations, inverses, and determinants.
- 2. Business Applications:
 - We discussed matrices' role in:
 - Market Research (e.g., consumer behavior, preference analysis)
 - Financial Analysis (e.g., portfolio optimization, risk management)
 - Operations Research (e.g., resource allocation, supply chain management)
 - Management Information Systems (e.g., data analysis, decision support)

Case Studies:

- We presented real-world examples, such as:
- A company using matrices to analyze customer preferences and optimize marketing strategies
- A financial institution employing matrices to manage investment portfolios and minimize risk

Conclusion:

The seminar demonstrated the significance of matrices in business, showcasing their ability to analyze complex data, optimize decision-making, and drive strategic planning. By applying matrix techniques, businesses can gain a competitive edge, improve efficiency, and enhance profitability.

Recommendations:

- Further exploration of matrices' applications in emerging fields like data science and artificial intelligence
- Investigation of matrices' role in addressing complex business challenges, such as sustainability and supply chain resilience
- Development of educational resources to share the power of matrices with a broader business audience

By embracing matrices, businesses can unlock new opportunities for growth, innovation, and success.

M. 6. 0.12/10/23

DEPARTMENT OF MATHMETICS

Date: 18.12.2022

Resource Person: Dr. Suvendu Parida, H.O.D Mathematics, S.C.S Autonomous College, Puri

Chaired By: Mr Jatindra Kumar Mishra, Principal

H.O.D: Mr Markandeswar Mohapatra

Faculty member: Mr Manoj Kumar Senapati

Title: Linear Programming in Daily Life: Optimizing Resources and Decision-Making

Introduction:

Linear programming (LP) is a powerful mathematical technique used to optimize resource allocation and decision-making in various fields. This seminar explores the applications of LP in daily life, highlighting its significance and impact.

- Definition and Basics: We introduced the concept of LP, explaining its components, including variables, constraints, and objective functions.
 - 2. Real-World Applications: We discussed LP's applications in:
 - Resource Allocation (e.g., production planning, inventory management)
 - Transportation and Logistics (e.g., route optimization, supply chain management)
 - Finance (e.g., portfolio optimization, risk management)
 - Healthcare (e.g., resource allocation, scheduling)
 - Energy Management (e.g., power grid optimization, energy efficiency)
 - 3. Case Studies:
 - We presented real-world examples, such as:

- A company optimizing production levels to meet demand while minimizing costs
- A transportation company using LP to reduce fuel consumption and lower emissions

Conclusion:

The seminar demonstrated the significance of linear programming in daily life, showcasing its ability to optimize resources, improve decision-making, and drive efficiency. By applying LP techniques, individuals and organizations can make informed decisions, reduce costs, and enhance productivity.

Recommendations:

- Further exploration of LP's applications in emerging fields like data science and artificial intelligence
 - Investigation of LP's role in addressing complex societal challenges, such as climate change and resource sustainability
 - Development of educational resources to share the power of LP with a broader audience

By embracing linear programming, we can unlock new opportunities for growth, innovation, and problem-solving in various aspects of life.

HOD

DE PRINCIPAL TOUR

Date: 22.01.2020

Resource Person: Mr Sadasib Das, Reader in Mathematics, Pipili College, Pipili

Chaired By: Mr Pravakar Sahoo, Principal

H.O.D: Mr Markandeswar Mohapatra

Faculty: Mr Manoj Kumar Senapati

Title: The Magic of Zero: Unveiling the Power of Nothingness

Introduction:

Zero, often considered a mere placeholder, holds a profound significance in mathematics, science, and philosophy. This seminar delves into the fascinating world of zero, exploring its unique properties, applications, and impact on human understanding.

- Historical Development: We traced the evolution of zero from ancient civilizations to its modern representation, highlighting its gradual acceptance and standardization.
- Mathematical Properties: We examined zero's role as the additive identity, its multiplicative property, and its behavior in calculus, revealing its versatility and importance.
- Scientific Applications: We discussed zero's significance in physics, engineering, and computer science, including its representation of the absence of quantity, infinity, and the binary system.

 Philosophical Implications: We touched upon the philosophical and cultural interpretations of zero, representing the void, the infinite, and the mysterious.

Conclusion:

The seminar showcased the multifaceted nature of zero, demonstrating its far-reaching impact on mathematics, science, and human understanding. By embracing the magic of zero, we can unlock new perspectives, foster innovation, and deepen our appreciation for the intricacies of mathematics.

Recommendations:

- Further exploration of zero's applications in emerging fields like data science and artificial intelligence
 - Investigation of zero's role in non-Western mathematical traditions and cultures
 - Development of educational resources to share the fascination of zero with a broader audience

By unraveling the magic of zero, we can continue to push the boundaries of human knowledge and innovation.

H. O. D.

Principal
D.K.N. College
Eranch, Cuttaci

DEPARTMENT OF MATHMETICS

5EMINAR DATE: 17.01.2019

RESOURCE PERSON: Dr. SRIKANTA DASH. LECTURER IN MATHEMATICS. BANKI AUTONOMOUS COLLEGE,

BANK

CHAIRED BY :MR DHIREN KUMAR MISHRA, PRINCIPAL

H.O.D : Mr MARKANDESWSR MOHAPATRA

FACULTY MEMBER: Mr MANOJA KUMAR SENAPATI

Title: How to Count without Counting: Exploring Alternative Methods in Mathematics

Introduction:

Counting is a fundamental concept in mathematics, but what if we told you there are ways to couwithout actually counting? This seminar delves into alternative methods that enable us to determine to number of objects or arrangements without explicit enumeration.

Methods:

- Hashing: We discussed how hashing functions can map objects to unique indices, allowing us to ke track of the number of objects without counting.
- Combinatorial Methods: We explored combinatorial formulas, such as permutations and combinatic to calculate the number of arrangements without counting.
- Approximation Algorithms: We introduced probabilistic and approximation techniques, like sample and estimation, to arrive at a close estimate of the count without exact enumeration.
- Data Structures: We examined data structures like Bloom filters, which provide an estimate of number of unique elements without storing or counting them explicitly.

This seminar showcased innovative methods to count without counting, highlighting the power of mathematical ingenuity. These techniques have far-reaching applications in computer science, statistics, and data analysis, enabling us to tackle complex problems with elegance and efficiency.

Recommendations:

- Further exploration of these methods in various mathematical contexts
- Investigation of new applications in emerging fields like data science and machine learning
- Development of educational resources to share these innovative techniques with a broader audience

By embracing the magic of "counting without counting," we can unlock new perspectives and approaches in mathematics, leading to exciting breakthroughs and discoveries.

H. O. D.

D.K.N. College